Module minder_utils.models.feature_extractors.simclr.basic
Expand source code
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc = nn.Linear(1792, 1024)
    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.pool(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.pool(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.pool(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.pool(x)
        x = nn.Flatten()(x)
        x = self.fc(x)
        return x
class ResNetSimCLR(nn.Module):
    def __init__(self, base_model, out_dim, **kwargs):
        super(ResNetSimCLR, self).__init__()
        self.resnet_dict = {"resnet18": models.resnet18(pretrained=False),
                            "resnet50": models.resnet50(pretrained=False),
                            "basic": Encoder()}
        resnet = self._get_basemodel(base_model)
        num_ftrs = resnet.fc.in_features
        self.features = nn.Sequential(*list(resnet.children())[:-1])
        # projection MLP
        self.l1 = nn.Linear(num_ftrs, num_ftrs)
        self.l2 = nn.Linear(num_ftrs, out_dim)
        self.base_model = base_model
    def _get_basemodel(self, model_name):
        try:
            model = self.resnet_dict[model_name]
            print("Feature extractor:", model_name)
            return model
        except:
            raise ("Invalid model name. Check the config file and pass one of: resnet18 or resnet50")
    def forward(self, x):
        h = self.features(x)
        h = nn.Flatten()(h) if self.base_model == 'basic' else h.squeeze()
        x = self.l1(h)
        x = F.relu(x)
        x = self.l2(x)
        return h, xClasses
- class Encoder
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc = nn.Linear(1792, 1024) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.pool(x) x = self.conv2(x) x = F.relu(x) x = self.pool(x) x = self.conv3(x) x = F.relu(x) x = self.pool(x) x = self.conv4(x) x = F.relu(x) x = self.pool(x) x = nn.Flatten()(x) x = self.fc(x) return xAncestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, x) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.pool(x) x = self.conv2(x) x = F.relu(x) x = self.pool(x) x = self.conv3(x) x = F.relu(x) x = self.pool(x) x = self.conv4(x) x = F.relu(x) x = self.pool(x) x = nn.Flatten()(x) x = self.fc(x) return x
 
- class ResNetSimCLR (base_model, out_dim, **kwargs)
- 
Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth: to, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool Initializes internal Module state, shared by both nn.Module and ScriptModule. Expand source codeclass ResNetSimCLR(nn.Module): def __init__(self, base_model, out_dim, **kwargs): super(ResNetSimCLR, self).__init__() self.resnet_dict = {"resnet18": models.resnet18(pretrained=False), "resnet50": models.resnet50(pretrained=False), "basic": Encoder()} resnet = self._get_basemodel(base_model) num_ftrs = resnet.fc.in_features self.features = nn.Sequential(*list(resnet.children())[:-1]) # projection MLP self.l1 = nn.Linear(num_ftrs, num_ftrs) self.l2 = nn.Linear(num_ftrs, out_dim) self.base_model = base_model def _get_basemodel(self, model_name): try: model = self.resnet_dict[model_name] print("Feature extractor:", model_name) return model except: raise ("Invalid model name. Check the config file and pass one of: resnet18 or resnet50") def forward(self, x): h = self.features(x) h = nn.Flatten()(h) if self.base_model == 'basic' else h.squeeze() x = self.l1(h) x = F.relu(x) x = self.l2(x) return h, xAncestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, x) ‑> Callable[..., Any]
- 
Defines the computation performed at every call. Should be overridden by all subclasses. Note Although the recipe for forward pass needs to be defined within this function, one should call the :class: Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source codedef forward(self, x): h = self.features(x) h = nn.Flatten()(h) if self.base_model == 'basic' else h.squeeze() x = self.l1(h) x = F.relu(x) x = self.l2(x) return h, x