Module minder_utils.models.feature_selectors.unsupervised.filter
Expand source code
from sklearn.feature_selection import VarianceThreshold
from minder_utils.models.utils import Feature_selector
class Unsupervised_Filter(Feature_selector):
    '''
    This class provide a set of unsupervised feature selection methods.
    Currently, it contains:
        - VarianceThreshold
    ```Example```
    ```
    from minder_utils.models.feature_selectors.unsupervised.filter import Unsupervised_Filter
    selector = Unsupervised_Filter(model='vt')
    # show the available methods:
    selector.get_info(verbose=True)
    # train the selector. Note the X is the data, y is None and will not be used
    selector.fit(X, y)
    # do the selection
    X = selector.transform(X)
    ```
    '''
    def __init__(self, model_name='vt'):
        super().__init__(model_name)
    @property
    def methods(self):
        return {
            'vt': 'VarianceThreshold',
        }
    @staticmethod
    def vt():
        return VarianceThreshold()
    def __name__(self):
        return 'Unsupervised Filter', self.name
    def fit(self, X, y=None):
        return self.model.fit(X)
    def transform(self, X):
        return self.model.transform(X)Classes
- class Unsupervised_Filter (model_name='vt')
- 
This class provide a set of unsupervised feature selection methods. Currently, it contains: - VarianceThreshold Examplefrom minder_utils.models.feature_selectors.unsupervised.filter import Unsupervised_Filter selector = Unsupervised_Filter(model='vt') # show the available methods: selector.get_info(verbose=True) # train the selector. Note the X is the data, y is None and will not be used selector.fit(X, y) # do the selection X = selector.transform(X)Expand source codeclass Unsupervised_Filter(Feature_selector): ''' This class provide a set of unsupervised feature selection methods. Currently, it contains: - VarianceThreshold ```Example``` ``` from minder_utils.models.feature_selectors.unsupervised.filter import Unsupervised_Filter selector = Unsupervised_Filter(model='vt') # show the available methods: selector.get_info(verbose=True) # train the selector. Note the X is the data, y is None and will not be used selector.fit(X, y) # do the selection X = selector.transform(X) ``` ''' def __init__(self, model_name='vt'): super().__init__(model_name) @property def methods(self): return { 'vt': 'VarianceThreshold', } @staticmethod def vt(): return VarianceThreshold() def __name__(self): return 'Unsupervised Filter', self.name def fit(self, X, y=None): return self.model.fit(X) def transform(self, X): return self.model.transform(X)Ancestors- Feature_selector
- abc.ABC
 Static methods- def vt()
- 
Expand source code@staticmethod def vt(): return VarianceThreshold()
 Instance variables- var methods
- 
Expand source code@property def methods(self): return { 'vt': 'VarianceThreshold', }
 Methods- def fit(self, X, y=None)
- 
Expand source codedef fit(self, X, y=None): return self.model.fit(X)
- def transform(self, X)
- 
Expand source codedef transform(self, X): return self.model.transform(X)