Module minder_utils.models.feature_selectors.unsupervised.filter
Expand source code
from sklearn.feature_selection import VarianceThreshold
from minder_utils.models.utils import Feature_selector
class Unsupervised_Filter(Feature_selector):
'''
This class provide a set of unsupervised feature selection methods.
Currently, it contains:
- VarianceThreshold
```Example```
```
from minder_utils.models.feature_selectors.unsupervised.filter import Unsupervised_Filter
selector = Unsupervised_Filter(model='vt')
# show the available methods:
selector.get_info(verbose=True)
# train the selector. Note the X is the data, y is None and will not be used
selector.fit(X, y)
# do the selection
X = selector.transform(X)
```
'''
def __init__(self, model_name='vt'):
super().__init__(model_name)
@property
def methods(self):
return {
'vt': 'VarianceThreshold',
}
@staticmethod
def vt():
return VarianceThreshold()
def __name__(self):
return 'Unsupervised Filter', self.name
def fit(self, X, y=None):
return self.model.fit(X)
def transform(self, X):
return self.model.transform(X)
Classes
class Unsupervised_Filter (model_name='vt')
-
This class provide a set of unsupervised feature selection methods.
Currently, it contains: - VarianceThreshold
Example
from minder_utils.models.feature_selectors.unsupervised.filter import Unsupervised_Filter selector = Unsupervised_Filter(model='vt') # show the available methods: selector.get_info(verbose=True) # train the selector. Note the X is the data, y is None and will not be used selector.fit(X, y) # do the selection X = selector.transform(X)
Expand source code
class Unsupervised_Filter(Feature_selector): ''' This class provide a set of unsupervised feature selection methods. Currently, it contains: - VarianceThreshold ```Example``` ``` from minder_utils.models.feature_selectors.unsupervised.filter import Unsupervised_Filter selector = Unsupervised_Filter(model='vt') # show the available methods: selector.get_info(verbose=True) # train the selector. Note the X is the data, y is None and will not be used selector.fit(X, y) # do the selection X = selector.transform(X) ``` ''' def __init__(self, model_name='vt'): super().__init__(model_name) @property def methods(self): return { 'vt': 'VarianceThreshold', } @staticmethod def vt(): return VarianceThreshold() def __name__(self): return 'Unsupervised Filter', self.name def fit(self, X, y=None): return self.model.fit(X) def transform(self, X): return self.model.transform(X)
Ancestors
- Feature_selector
- abc.ABC
Static methods
def vt()
-
Expand source code
@staticmethod def vt(): return VarianceThreshold()
Instance variables
var methods
-
Expand source code
@property def methods(self): return { 'vt': 'VarianceThreshold', }
Methods
def fit(self, X, y=None)
-
Expand source code
def fit(self, X, y=None): return self.model.fit(X)
def transform(self, X)
-
Expand source code
def transform(self, X): return self.model.transform(X)