Module minder_utils.models.outlier_detection.OutlierModels
Expand source code
import numpy as np
class Outlier_Detector:
def __init__(self, method='grubbs'):
pass
class ZScore:
def __init__(self):
return
def fit(self, X):
self.mean = np.mean(X, axis=0)
self.std = np.std(X, axis=0)
self.std[self.std == 0] = np.nan
return
def decision_function(self, X):
return np.nanmean((X - self.mean) / self.std)
Classes
class Outlier_Detector (method='grubbs')
-
Expand source code
class Outlier_Detector: def __init__(self, method='grubbs'): pass
class ZScore
-
Expand source code
class ZScore: def __init__(self): return def fit(self, X): self.mean = np.mean(X, axis=0) self.std = np.std(X, axis=0) self.std[self.std == 0] = np.nan return def decision_function(self, X): return np.nanmean((X - self.mean) / self.std)
Methods
def decision_function(self, X)
-
Expand source code
def decision_function(self, X): return np.nanmean((X - self.mean) / self.std)
def fit(self, X)
-
Expand source code
def fit(self, X): self.mean = np.mean(X, axis=0) self.std = np.std(X, axis=0) self.std[self.std == 0] = np.nan return