Module minder_utils.models.outlier_detection.OutlierModels
Expand source code
import numpy as np
class Outlier_Detector:
    def __init__(self, method='grubbs'):
        pass
class ZScore:
    def __init__(self):
        return
    def fit(self, X):
        self.mean = np.mean(X, axis=0)
        self.std = np.std(X, axis=0)
        self.std[self.std == 0] = np.nan
        return
    def decision_function(self, X):
        return np.nanmean((X - self.mean) / self.std)Classes
- class Outlier_Detector (method='grubbs')
- 
Expand source codeclass Outlier_Detector: def __init__(self, method='grubbs'): pass
- class ZScore
- 
Expand source codeclass ZScore: def __init__(self): return def fit(self, X): self.mean = np.mean(X, axis=0) self.std = np.std(X, axis=0) self.std[self.std == 0] = np.nan return def decision_function(self, X): return np.nanmean((X - self.mean) / self.std)Methods- def decision_function(self, X)
- 
Expand source codedef decision_function(self, X): return np.nanmean((X - self.mean) / self.std)
- def fit(self, X)
- 
Expand source codedef fit(self, X): self.mean = np.mean(X, axis=0) self.std = np.std(X, axis=0) self.std[self.std == 0] = np.nan return