Module minder_utils.models.utils.early_stopping
Expand source code
import numpy as np
import torch
import os
from minder_utils.util import save_mkdir
class EarlyStopping:
    """Early stops the training if validation loss doesn't improve after a given patience."""
    def __init__(self, patience=20, verbose=False, delta=0, path='./ckpt', save_model=False,
                 trace_func=print, **kwargs):
        """
        Args:
            patience (int): How long to wait after last time validation loss improved.
                            Default: 7
            verbose (bool): If True, prints a message for each validation loss improvement.
                            Default: False
            delta (float): Minimum change in the monitored quantity to qualify as an improvement.
                            Default: 0
            path (str): Path for the checkpoint to be saved to.
                            Default: 'checkpoint.pt'
            trace_func (function): trace print function.
                            Default: print
        """
        self.patience = patience
        self.verbose = verbose
        self.counter = 0
        self.best_score = None
        self.early_stop = False
        self.val_loss_min = np.Inf
        self.delta = delta
        self.path = path
        self.trace_func = trace_func
        self.save_model = save_model
    def __call__(self, val_loss, model, save_name):
        score = -val_loss
        if self.best_score is None:
            self.best_score = score
            if self.save_model:
                self.save_checkpoint(val_loss, model, save_name)
        elif score < self.best_score + self.delta:
            self.counter += 1
            # self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
                self.trace_func('Training is stopped due to early stopping')
        else:
            self.best_score = score
            if self.save_model:
                self.save_checkpoint(val_loss, model, save_name)
            self.counter = 0
    def save_checkpoint(self, val_loss, model, save_name):
        '''Saves model when validation loss decrease.'''
        if self.verbose:
            self.trace_func(
                f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}).  Saving model ...')
        save_mkdir(self.path)
        torch.save(model.state_dict(), os.path.join(self.path, save_name))
        self.val_loss_min = val_lossClasses
- class EarlyStopping (patience=20, verbose=False, delta=0, path='./ckpt', save_model=False, trace_func=<built-in function print>, **kwargs)
- 
Early stops the training if validation loss doesn't improve after a given patience. Args- patience:- int
- How long to wait after last time validation loss improved. Default: 7
- verbose:- bool
- If True, prints a message for each validation loss improvement. Default: False
- delta:- float
- Minimum change in the monitored quantity to qualify as an improvement. Default: 0
- path:- str
- Path for the checkpoint to be saved to. Default: 'checkpoint.pt'
- trace_func:- function
- trace print function. Default: print
 Expand source codeclass EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=20, verbose=False, delta=0, path='./ckpt', save_model=False, trace_func=print, **kwargs): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' trace_func (function): trace print function. Default: print """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path self.trace_func = trace_func self.save_model = save_model def __call__(self, val_loss, model, save_name): score = -val_loss if self.best_score is None: self.best_score = score if self.save_model: self.save_checkpoint(val_loss, model, save_name) elif score < self.best_score + self.delta: self.counter += 1 # self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True self.trace_func('Training is stopped due to early stopping') else: self.best_score = score if self.save_model: self.save_checkpoint(val_loss, model, save_name) self.counter = 0 def save_checkpoint(self, val_loss, model, save_name): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func( f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') save_mkdir(self.path) torch.save(model.state_dict(), os.path.join(self.path, save_name)) self.val_loss_min = val_lossMethods- def save_checkpoint(self, val_loss, model, save_name)
- 
Saves model when validation loss decrease. Expand source codedef save_checkpoint(self, val_loss, model, save_name): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func( f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') save_mkdir(self.path) torch.save(model.state_dict(), os.path.join(self.path, save_name)) self.val_loss_min = val_loss