Module minder_utils.models.utils.early_stopping
Expand source code
import numpy as np
import torch
import os
from minder_utils.util import save_mkdir
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=20, verbose=False, delta=0, path='./ckpt', save_model=False,
trace_func=print, **kwargs):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
self.save_model = save_model
def __call__(self, val_loss, model, save_name):
score = -val_loss
if self.best_score is None:
self.best_score = score
if self.save_model:
self.save_checkpoint(val_loss, model, save_name)
elif score < self.best_score + self.delta:
self.counter += 1
# self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
self.trace_func('Training is stopped due to early stopping')
else:
self.best_score = score
if self.save_model:
self.save_checkpoint(val_loss, model, save_name)
self.counter = 0
def save_checkpoint(self, val_loss, model, save_name):
'''Saves model when validation loss decrease.'''
if self.verbose:
self.trace_func(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
save_mkdir(self.path)
torch.save(model.state_dict(), os.path.join(self.path, save_name))
self.val_loss_min = val_loss
Classes
class EarlyStopping (patience=20, verbose=False, delta=0, path='./ckpt', save_model=False, trace_func=<built-in function print>, **kwargs)
-
Early stops the training if validation loss doesn't improve after a given patience.
Args
patience
:int
- How long to wait after last time validation loss improved. Default: 7
verbose
:bool
- If True, prints a message for each validation loss improvement. Default: False
delta
:float
- Minimum change in the monitored quantity to qualify as an improvement. Default: 0
path
:str
- Path for the checkpoint to be saved to. Default: 'checkpoint.pt'
trace_func
:function
- trace print function. Default: print
Expand source code
class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=20, verbose=False, delta=0, path='./ckpt', save_model=False, trace_func=print, **kwargs): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' trace_func (function): trace print function. Default: print """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path self.trace_func = trace_func self.save_model = save_model def __call__(self, val_loss, model, save_name): score = -val_loss if self.best_score is None: self.best_score = score if self.save_model: self.save_checkpoint(val_loss, model, save_name) elif score < self.best_score + self.delta: self.counter += 1 # self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True self.trace_func('Training is stopped due to early stopping') else: self.best_score = score if self.save_model: self.save_checkpoint(val_loss, model, save_name) self.counter = 0 def save_checkpoint(self, val_loss, model, save_name): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func( f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') save_mkdir(self.path) torch.save(model.state_dict(), os.path.join(self.path, save_name)) self.val_loss_min = val_loss
Methods
def save_checkpoint(self, val_loss, model, save_name)
-
Saves model when validation loss decrease.
Expand source code
def save_checkpoint(self, val_loss, model, save_name): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func( f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') save_mkdir(self.path) torch.save(model.state_dict(), os.path.join(self.path, save_name)) self.val_loss_min = val_loss