Module minder_utils.util.decorators.pytorch_func
Expand source code
from functools import wraps
import torch
class pytorch_train:
    def __init__(self):
        pass
    def __call__(self, func):
        optimizer = torch.optim.Adam(self.model.parameters(), 3e-4)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0,
                                                               last_epoch=-1)
        @wraps(func)
        def wrapped_function(*args, **kwargs):
            passClasses
- class pytorch_train
- 
Expand source codeclass pytorch_train: def __init__(self): pass def __call__(self, func): optimizer = torch.optim.Adam(self.model.parameters(), 3e-4) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0, last_epoch=-1) @wraps(func) def wrapped_function(*args, **kwargs): pass