Module minder_utils.util.decorators.pytorch_func
Expand source code
from functools import wraps
import torch
class pytorch_train:
def __init__(self):
pass
def __call__(self, func):
optimizer = torch.optim.Adam(self.model.parameters(), 3e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0,
last_epoch=-1)
@wraps(func)
def wrapped_function(*args, **kwargs):
pass
Classes
class pytorch_train
-
Expand source code
class pytorch_train: def __init__(self): pass def __call__(self, func): optimizer = torch.optim.Adam(self.model.parameters(), 3e-4) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0, last_epoch=-1) @wraps(func) def wrapped_function(*args, **kwargs): pass